G	Question		Answer	Marks	Guidance
1	(a)	(i)	$Cl_2 + H_2O \rightarrow HCIO + HCI \checkmark$	1	
		(ii)	 (Chlorine compounds are) carcinogenic OR (Chlorine compounds are) toxic OR poisonous ✓ 	1	 ALLOW 'they' OR 'chlorinated hydrocarbons' OR 'it' for 'chlorine compounds' IGNORE harmful OR dangerous IGNORE references to HCl or HClO IGNORE chlorine is toxic DO NOT ALLOW chlorine is carcinogenic
	(b)	(i)	Precipitation ✓	1	
		(ii)	$Ag^{+}(aq) + CI^{-}(aq) \rightarrow AgCI(s) ✓$	1	Equation AND state symbols required for mark DO NOT ALLOW spectator ions
	(c)	(i)	8.604/143.4 = 0.06(00) (mol) ✓	1	

Q	Question		Answer		Guidance
	(c)	(ii)	If a Group 2 chloride is used amount of Group 2 chloride = $\frac{1}{2} \times 0.0600$ OR = 0.0300 mol \checkmark Mass of 1 mol of Group 2 chloride = $\frac{2.86}{95.3(3)} = 95.3(3) \checkmark$ 0.0300 [Relative atomic mass of M = 95.3(3) – 71.0) = 24.3 (g mol ⁻¹)] AND metal = Mg \checkmark	3	DO NOT ALLOW 24.3 and Mg without appropriate working Check to see if there is any ECF credit possible using working below ALLOW calculator value or rounding to 2 significant figures or more but IGNORE 'trailing' zeroes, eg 0.200 allowed as 0.2 ALLOW ECF for correctly calculated $\frac{1}{2}$ x answer to (c)(i) Must be at least 1 decimal place for second marking point ALLOW ECF for 2.86/mol of metal chloride seen above eg MCI will give 0.0600 mol of metal chloride and this will likely give 2.86/0.0600 = 47.7 eg MCl ₃ will give 0.0200 mol of metal chloride and this will likely give 2.86/0.0200 = 143.0 ALLOW ECF for mass of Group 2 chloride – 71.0 provided it is not a negative value ALLOW ECF even if molar mass of chloride was given as a whole number above ALLOW ECF for mass of metal chloride – 35.5 if amount of metal chloride = 0.0600 mol eg 47.7 – 35.5 = 12.2 AND Be ALLOW ECF for mass of metal chloride – 106.5 if amount of metal chloride = 0.0200 mol eg 143.0 – 106.5 = 36.5 AND Ca

G	Question		Answer		Guidance
	(d)	(i)	A shared pair of electrons AND both electrons are donated by one atom ✓		
		(ii)	NH₄ ⁺ AND Cl [−] ✓		ALLOW $NH_4CI \rightarrow NH_4^+ + CI^-$ OR $NH_4^+ + CI^- \rightarrow NH_4CI$
		(iii)	Ammonium ion with three covalent ' <i>dot-and-cross</i> ' bonds AND one dative covalent bond ✓		
			Chloride ion with 8e ⁻ AND 1 of these electrons different \checkmark		ALLOW other symbols for dots and crosses eg triangles
			$\begin{bmatrix} H \\ \bullet \times \\ H \\ \star \times \\ H \\ H \end{bmatrix}^{+} \begin{bmatrix} \bullet \bullet \\ \bullet \bullet \\ \star \bullet \\ \star \bullet \\ H \end{bmatrix}^{-}$		IGNORE charges IGNORE 'dative' arrow within the lone pair of the N atom
	(e)	(i)	(Thermal) decomposition ✓	1	

Question	Answer	Marks	Guidance
(e) (ii)	FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer = 242 (cm ³) award 3 marks	3	IGNORE over rounding to two significant figures once DO NOT ALLOW over rounding to two significant figures twice eg ALLOW the following answer for 3 marks 241 (cm ³) (0.00672 was rounded to 0.0067 OR 0.0101 was rounded to 0.010) ALLOW the following answers for 2 marks 240 (cm ³) (0.00672 was rounded to 0.0067 AND 0.0101 was rounded to 0.010) 252 (cm ³) (0.00672 was rounded to 0.007) 161 cm ³ (no multiplying by 3/2)
	(amount of KClO ₃) = 0.824/122.6 OR = 0.00672 (mol) ✓		If there is an alternative answer, check to see if there is any ECF credit possible using working below ALLOW up to correctly rounded calculator value of 0.006721044046
	(amount O ₂) = (mol of KClO ₃) 0.00672 × 3/2 OR = 0.0101 (mol)		ALLOW up to correctly rounded calculator value ALLOW ECF for mol of KClO ₃ × $3/2$ for 2nd mark
	(volume of O_2) = 0.0101 × 24 000 = 242 (cm ³) \checkmark		ALLOW ECF for (mol of KClO ₃) × $3/2 \times 24000$
	Total	16	

Q	Question		er	Mark	Guidance
2	(a)	(i)	The hydrogen ions OR H ⁺ OR protons (of hydrochloric acid) are replaced by zinc ions OR Zn ²⁺ ✓	1	ALLOW Zn ions OR positive ions replace H ions OR a metal ion has replaced a hydrogen ion OR protons DO NOT ALLOW Zn replaces H. Ions are key either in word form or symbol form DO NOT ALLOW Zn ⁺ i.e. if charge is shown it must be correct
		(ii)	Zn ₃ (PO ₄) ₂ ✓	1	ALLOW ZnHPO ₄ OR Zn(H ₂ PO ₄) ₂ ALLOW Zn ₃ P ₂ O ₈
	(b)		reactivity increases (down the group) ✓	1	USE annotations with ticks, crosses, con, ECF, etc for this part. 'down the group' not required ALLOW alternative phrases for 'reactivity increases'
			atomic radii increases OR there are more shells ✓	1	ALLOW 'there are more energy levels' ALLOW 'electrons are in a higher energy level' ALLOW 'the electrons are further from nucleus' IGNORE there are more orbitals OR more sub-shells IGNORE 'different shell' or 'new shell'
			<i>Increased shielding mark</i> there is more shielding ✓	1	ALLOW 'more screening' There must be a clear comparison i.e. 'more shielding' OR 'increased shielding'. i.e. DO NOT ALLOW 'there is shielding' ALLOW 'there is more electron repulsion from inner shells' 'more' is
			Nuclear attraction mark The nuclear attraction decreases OR (outermost) electrons experience less attraction (to nucleus) OR Increased shielding / distance outweighs the increased nuclear charge ✓	1	ALLOW 'there is less nuclear pull' OR 'electrons less tightly held' IGNORE 'there is less effective nuclear charge' IGNORE 'nuclear charge' for 'nuclear attraction'
			easier to remove (outer) electrons OR ionisation energy decreases ✓ ORA throughout	1	ALLOW 'easier to oxidise' <i>Quality of Written Communication</i> – 'electron(s)' <i>OR</i> 'ionisation' <i>OR</i> 'ionization' <i>OR</i> 'oxidise' <i>OR</i> oxidize' spelled correctly at least once for 5 th marking point
			Total	7	

Q	uest	ion	er	Mark	Guidance
3	(a)		Metallic lattice has delocalised OR mobile electrons OR metallic bonding has delocalised OR mobile electrons \checkmark lonic lattice has no mobile ions OR ionic solid has no mobile ions \checkmark	1	IGNORE 'free electrons' for 'mobile electrons' DO NOT ALLOW references to incorrect bonding ALLOW 'ions are fixed in place' IGNORE 'no mobile electrons' for solid ionic IGNORE 'no mobile charge carriers' for solid ionic
			molten ionic (compounds) have mobile ions 🗸	1	IGNORE 'delocalised ions' OR 'free ions' for 'mobile ions' DO NOT ALLOW any mention of electrons moving IGNORE 'aqueous ionic compounds have mobile ions'
	(b)	(i)	Two (or more) ammonia molecules with at least one H δ + and at least one N δ - (can be on the same or different molecules) \checkmark	1	There must be 3H atoms bonded to one N atom DO NOT ALLOW any H δ - OR N δ + ALLOW 2-D NH ₃ molecules IGNORE lone pair(s) for first marking point
			H-bond between H in one ammonia and lone pair of N in another ammonia molecule \checkmark hydrogen bond H H $\uparrow^{\delta-}$ \forall δ^+ \uparrow H H H H N \bullet H H H	1	 All H-bonds drawn must hit the lone pair H-bond does not need to be labelled but must be different from covalent bond DO NOT ALLOW more than one lone pair on N for second marking point ALLOW a pair of molecules with two 'correct' hydrogen bonds forming a 'dimer'
		(ii)	Ice has stronger hydrogen bonds ✓	1	ALLOW 'more' for 'stronger' OR Ice has twice as many hydrogen bonds as ammonia ALLOW ice has stronger intermolecular forces than ammonia OR bigger permanent dipole than ammonia DO NOT ALLOW comparisons between different types of force DO NOT ALLOW reference to van der Waals' IGNORE 'more energy needed'
			O has two lone pairs (AND N has one) OR O more electronegative (than N) ✓	1	ALLOW O has more lone pairs

Question	n er	Mark	Guidance
(c)	SiO₂ is giant covalent (lattice)✓	1	USE annotations with ticks, crosses, con, ECF, etc for this part. ALLOW macromolecular OR giant atomic ALLOW SiO ₂ is a 'giant structure with covalent bonds' ALLOW even if reference to 'covalent' only appears later in answer. DO NOT ALLOW any reference to 'ionic' OR 'intermolecular' OR 'metallic' Quality of Written Communication - Covalent OR macromolecular OR atomic spelt correctly ONCE and used in context of the first marking point
	SiCl₄ is simple molecular (lattice) ✓	1	ALLOW simple covalent DO NOT ALLOW any reference to 'giant' OR 'ionic' OR 'metallic' If neither of the 1st 2 marks have been awarded, ALLOW 1 mark for SiO ₂ is giant AND SiCl ₄ is simple OR molecular
	van der Waals' forces in SiCl ₄ \checkmark	1	ALLOW induced dipoles DO NOT ALLOW permanent dipoles
	Covalent bonds broken in $SiO_2 \checkmark$	1	ALLOW alternative words to broken e.g. overcome
	Forces OR bonds are stronger in SiO ₂ (than in SiCl ₄) OR more energy is needed to break forces OR bonds in SiC (than in SiCl ₄) ✓ ORA	2	ALLOW incorrect forces in SiCl ₄ OR SiO ₂ for this mark
	T(otal 12	

Que	Question		Expected Answers	Marks	Additional Guidance
4	а	i	1 = purple / lilac / violet / pink / mauve \checkmark 3 = orange \checkmark	2	ALLOW any combination of these but no others for 1 ALLOW yellow as an alternative for 3 DO NOT ALLOW 'precipitate' in either
		ii	$Cl_2 + 2Br^- \longrightarrow 2Cl^- + Br_2 \checkmark$	1	IGNORE state symbols ALLOW correct multiples, including fractions
		iii	Addition of Br₂(aq) to I⁻(aq) ions ✓	1	 ALLOW Addition of bromine to iodide (i.e. aqueous not needed) DO NOT ALLOW Addition of bromine to iodine ALLOW Addition of I₂ to Br⁻, but NOT if accompanied by description of displacement of bromine ALLOW Br₂ + I⁻ even if seen in an unbalanced equation
	b	i	Cl ₂ is 0 AND HCl is −1 AND HClO is (+)1 \checkmark	3	ALLOW 1– ALLOW 1+ Oxidation states may be seen above the equation DO NOT ALLOW CI ⁻ in HCI DO NOT ALLOW CI ⁺ in HCIO in text of answer DO NOT ALLOW chlorIDE in place of 'chlorine'
			Chlorine has been both oxidised and reduced OR Chlorine's oxidation state has increased and decreased ✓		IF CORRECT OXIDATION STATES ARE SEEN, ALLOW second and third marking points for: Chlorine is oxidised to form HCIO Chlorine is reduced to form HCI ALLOW CI or Cl ₂ for 'chlorine'
			Chlorine has been oxidised (from 0) to +1 AND chlorine has been reduced (from 0) to $-1 \checkmark$ (These two points together subsume the second marking point)		IGNORE reference to electron loss / gain if correct DO NOT ALLOW 3rd mark for reference to electron loss / gain if incorrect ALLOW one mark for 'disproportionation is when a species is both oxidised and reduced' if chlorine / chloride is not mentioned
		ii	Kills bacteria OR 'kills germs' kills micro-organisms OR makes water safe to drink OR sterilises water ✓ OR 'disinfects'	1	ALLOW to make water potable ALLOW 'removes' for 'kills' IGNORE 'virus' IGNORE 'purifies water'
	С	i	Thermal decomposition ✓	1	DO NOT ALLOW just 'decomposition' or 'thermodecomposition'
		ii	$\frac{1.47}{84.3}$ = 0.0174 mol of MgCO ₃ ✓ 0.0174 × 24.0 = 0.418 dm ³	2	ALLOW mol of MgCO ₃ as calculator value of 0.017437722 or correct rounding to 2 sig figs or more DO NOT ALLOW 0.0175 (this has taken M_r of MgCO ₃ as 84) ALLOW , for 2nd mark calculated moles of MgCO₃ × 24(.0) as calculator value or correct
			OR (Calculator value \times 24.0) = 0.419 dm ³ \checkmark		rounding to 2 sig figs or more [e.g. $0.017 \times 24(.0) = 0.408$] DO NOT ALLOW 84.3 or $1.47 \times 24(.0)$ as no mole calculation has been done ALLOW two marks for correct answer with no working shown

Question		on	Expected Answers	Marks	Additional Guidance
4	C	iii	The ease of (thermal) decomposition decreases (down the group) ora ✓	1	ALLOW (thermal) stability increases IGNORE more heat would be needed IGNORE 'takes longer' or 'is slower' IGNORE reference to trend in reactivity IGNORE answers which include 'more / less mol of CO ₂ '
			Total	15	

Que	Question		Expected Answers	Marks	Additional Guidance
5	а		(+) $(+)$	3	Lattice diagram must have at least two rows of correctly charged ions and a minimum of 2 ions per row
			(+) - (+) - (+) Delocalised electrons Diagram showing a regular arrangement of labelled		ALLOW as label: + ions, positive ions, cations If '+' is unlabelled in diagram, award label from a correct statement within the text below
			Scattering of labelled electrons between other		DO NOT ALLOW 2+, 3+ etc ions DO NOT ALLOW for label or in text: nuclei OR positive atom OR protons
			species OR a statement anywhere of delocalised electrons (can be in text or in diagram) ✓		ALLOW e ⁻ OR e as label for electron
			The attraction between + ions and e [−] is strong OR metallic bonding is strong ✓		ALLOW a lot of energy is needed to break the (metallic) bond DO NOT ALLOW incorrect particles or incorrect attraction e.g. 'intermolecular attraction' or 'nuclear attraction'
	b	İ	F F $FDot and cross bond + 6 matching electrons on each F atom \checkmark$	1	ALLOW diagram consisting of all dots OR all crosses Circles not essential ALLOW 'FI' for fluorine
		ii	F_2 has induced dipoles OR temporary dipoles OR van der Waals' forces (between the molecules) \checkmark which are weak \checkmark	2	ALLOW little energy needed to overcome intermolecular bonding for second mark ALLOW 'weak' intermolecular bonding for second mark ALLOW max 1 mark if structure is referred to as giant with first and second marking points correct Award no marks if 'weak' is applied to incorrect bonding. E.g. ionic, covalent, metallic or unspecified bonding

Ques	Question		Expected Answers	Marks	Additional Guidance
5 c	;	i	$\begin{bmatrix} \mathbf{u} \\ \mathbf{u} \end{bmatrix}^{+} \begin{bmatrix} \mathbf{v} \\ \mathbf{v} \end{bmatrix}^{-}$ Li shown with either 2 or 0 electrons and F shown with 8 electrons with 7 crosses and one dot (or <i>vice</i> <i>versa</i>) \checkmark correct charges on both ions \checkmark	2	For first mark, if 2 electrons are shown in the cation then the 'extra' electron in the anion must match symbol chosen for electrons in the cation IGNORE inner shell electrons ALLOW 'FI' for fluorine Circles not essential DO NOT ALLOW Li ⁺ with 8 electrons
		ii	Ions cannot move in a solid ✓ Ions can move OR are mobile when molten ✓	2	ALLOW ions are fixed in place IGNORE electrons IGNORE 'charge carriers' or 'charged particles' DO NOT ALLOW ions can move when in solution IGNORE charge carriers IGNORE 'delocalised ions' or 'free ions' ALLOW 'Ions can only move when molten' for one mark Any mention of electrons moving when molten is a CON
d	I	i	$2B + 3F_2 \longrightarrow 2BF_3 \checkmark$	1	ALLOW B ₂ ALLOW multiples including fractions
		ii	 Shape: trigonal planar ✓ Bond angle: 120° ✓ Explanation: Pairs of electrons repel (one another equally) ✓ Boron has 3 bonded pairs (and 0 lone pairs) ✓ 	4	 'Trigonal planar' must be seen and spelt correctly at least ONCE DO NOT ALLOW 'atoms repel' or 'electrons repel' ALLOW 'bonds repel' ALLOW diagram showing B atom with three dot-and-cross pairs of electrons, but no lone pairs for 4th mark Must refer to boron / central atom
					ALLOW 'bonds' for 'bonded pairs'

Que	Question		Expected Answers	Marks	Additional Guidance
5	e		F is more electronegative than N OR ${}^{\delta^{+}}F-N^{\delta^{+}} \checkmark$ Dipoles do not cancel OR	2	ALLOW F attracts electrons more than N ALLOW N has a partial positive charge and F has a partial negative charge (partial must be seen) DO NOT ALLOW diagrams that contradict statements about polarity
	f		(As you go across the period) The atomic radii decreases ✓	4	Use annotations with ticks, crosses ECF etc. for this part Assume 'across the period from Li to F' ALLOW (outer shell) electrons get closer (to nucleus)
			The nuclear charge increases OR protons increase ✓		IGNORE 'atomic number increases', but ALLOW 'proton number' increases IGNORE 'nucleus gets bigger' 'Charge increases' is insufficient ALLOW 'effective nuclear charge increases' OR 'shielded nuclear charge increases' Nuclear OR proton(s) OR nucleus spelt correctly ONCE and used in context of 2nd marking point
			electrons are added to the same shell OR shielding remains the same ✓		ALLOW shielding is similar ALLOW screening for shielding DO NOT ALLOW 'subshells' DO NOT ALLOW 'distance is similar' This will CON first marking point
			great er (nuclear) attraction on (outer) electrons / (outer) shell(s) ✓		ALLOW 'greater (nuclear) pull for greater nuclear attraction' DO NOT ALLOW 'pulled in more' as this is a restatement of the first marking point
			Total	21	